${\mathbb R}$ besitzt als ${\mathbb Q}-$ Vektorraum keine abzählbare Basis

Lemma:

Sei K ein Körper, V ein Vektorraum über K und B eine Basis von V. Ist $V \neq \{0\}$ und ist K oder B eine unendliche Menge. so gilt:

$$|V| = \max\{|K|, |B|\}$$

Beweis:

 \leq

Sicher ist $|B| \leq |V|$

Wähle $0 \neq X \in B$. Für $a, b \in K$ mit $a \neq b$ ist $aX \neq bX$ da $X \neq 0$. damit ist

$$|K| = |\{aX | a \in K\}| = |< X > | \le |V|$$

und es folgt

$$\max\{|K|, |B|\} \le |V|\}$$

 \geq

Sei $i \in \underline{k} \mid$ und $Y \in V \setminus \{0\}$ mit

$$Y = \sum_{i \in k \mid \lambda_i X_i}$$

für $X_i \in B$ und passende $\lambda_i \in K$.

Definiere die Abbildung $\varphi: V \to \mathcal{P}_{fin}(K \times B)^1$

$$\varphi(Y) \left\{ \begin{array}{l} \{(\lambda_i, X_i) \in K \times B | \forall \lambda_i \in K, X_i \in B : Y = \sum_{i \in \underline{k} \mid} \lambda_i X_i \} & Y \neq 0 \\ \emptyset & Y = 0 \end{array} \right.$$

 φ ist injektiv und da $K \times B$ eine unendliche Menge ist gilt:

$$|\mathcal{P}_{fin}(K \times B)| = |K \times B| = \max\{|K|, |B|\}$$

² Es folgt:

$$\max\{|K|, |B|\} \ge |V|$$

 $^{{}^{1}\}mathcal{P}_{fin}(K \times B) := \{S \subseteq K \times B | S \text{ endlich}\}$ Das fin steht also für finit (engl. endlich

²dieses Resultat über unendliche Mengen ist keinesfalls trivial und müsste eigentlich noch bewiesen werden...

Satz:

Der Vektoraum $\mathbb R$ über $\mathbb Q$ besitzt keine abzählbare Basis

Beweis:

Es ist $|\mathbb{N}|=|\mathbb{Q}|=\aleph_0<|\mathbb{R}|$. Annahme: B wäre eine Basis von \mathbb{R} über \mathbb{Q} mit $|B|\leq |\mathbb{N}|$. So wäre nach dem Lemma

$$|\mathbb{R}| = \max\{|\mathbb{Q}|, |B|\} = \aleph_0$$

Wiederspruch da $\mathbb R$ überabzählbar ist.